
Postprint

Weak Conformance of Process Models
with respect to Data Objects

Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert-Str. 2–3, D-14482 Potsdam, Germany
{Andreas.Meyer,Artem.Polyvyanyy,Mathias.Weske}@hpi.uni-potsdam.de

Abstract. Process models specify behavioral aspects by describing or-
dering constraints between tasks which must be accomplished to achieve
envisioned goals. Tasks usually exchange information by means of data
objects, i.e., by writing information to and reading information from data
objects. A data object can be characterized by its states and allowed state
transitions. In this paper, we propose a notion which checks conformance
of a process model with respect to data objects that its tasks access. This
new notion can be used to tell whether in every execution of a process
model each time a task needs to access a data object in a particular state,
it is ensured that the data object is in the expected state or can reach
the expected state and, hence, the process model can achieve its goals.

1 Introduction
Process modeling usually comprises two aspects: The control flow perspective and
the data flow perspective [1]. Control flow defines possible execution sequences
of tasks, whereas data flow provides means for exchanging information between
the tasks. Information gets passed between tasks of a process model by writing
to and reading from data objects. A data object can be formalized as a set of
data states and transitions between the data states, i.e., as a labeled transition
system, which is usually referred to as an object life cycle. An object life cycle
can be used to identify the current data state of the data object and the set of its
reachable data states from the current one [2]. Similarly, the execution semantics
of process models is often defined by employing the notion of a process state that
defines a set of tasks which can be performed. A process state changes once a
task gets accomplished. A process state together with all data states (one for
each data object) collectively define a state of a process instance. It is usually
accepted that control flow drives execution of process models, i.e., a change in a
process instance state is triggered by a change of a process state which in turn
may activate changes of data states.

In order to achieve safe execution of a process model, it must be ensured that
every time a task attempts to access a data object, the data object is in a certain
expected data state or is able to reach the expected data state from the current
one, i.e., object life cycles of data objects must conform to the process model;
otherwise, the execution of a process model may deadlock, i.e., terminate prior to
reaching the goal state. In this paper, we propose a notion of weak conformance

mailto:Andreas.Meyer@hpi.uni-potsdam.de;Artem.Polyvyanyy@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de


2 Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

which allows for a precise characterization of the above described intuition, where
“weak” reflects the fact that data states are required to be reachable via arbitrary
number of data state transitions and not necessarily via a single one. In a process
model which satisfies weak conformance with respect to its data objects, it is
assumed that implicit data state transitions get realized by an external entity
or by detailed implementations of process model tasks. We believe that the new
notion will find its use when checking conformance in the situations of partial
model specification, e.g., when process models and object life cycles are specified
at different levels of detail.

The remainder of the paper proceeds as follows: The next section describes
process scenarios – a formalism which integrates control flow and data flow aspects
of process modeling. In Section 3, we define the notion of weak conformance of
the process model from a process scenario with respect to data objects it operates
with. Section 4 is devoted to related works. Finally, Section 5 draws conclusion.

2 Process Scenarios
In this section, we propose process scenarios – a formalism for designing concurrent
systems which integrates control flow and data flow perspectives. A process
scenario consists of two parts: (i) a process model which orchestrates the execution
of tasks, and (ii) data objects which describe what information do tasks require to
be executed and/or what information do tasks produce. We start the discussion
with the definition of the first part – a process model.

Definition 1 (Process model).
A process model is a tuple M = (A,G,D,R,C,F, type,A, µ), where A is a finite
set of tasks, G is a finite set of gateways, D is a finite set of data objects, R is
a finite set of data states, C ⊆ (A ∪ G) × (A ∪ G) is the control flow relation,
F ⊆ (A×(D×R))∪((D×R)×A) is the data flow relation, type ∶ G→ {xor ,and}
assigns to each gateway a type, A is a finite set of names such that τ ∈ A (A, G,
D, R, and A are pairwise disjoint), and µ ∶ A→ A assigns to each task a name.

We use subscripts, e.g., AM , GM , and µM , to denote the relation of the sets and
functions to process model M , and omit subscripts where the context is clear.
We refer to the set A ∪G as nodes of process model M . If µ(a) ≠ τ , a ∈ A, then
a is observable in M ; otherwise a is silent in M . We expect that every process
model M fulfills basic structural correctness requirements: (i) every task of M
has at most one incoming and at most one outgoing control flow edge, (ii) every
gateway has at least three incident control flow edges, (iii) M has exactly one
source task and at least one sink task (the source has exactly one outgoing and
no incoming control flow edges, while each sink has exactly one incoming and no
outgoing control flow edges), (iv) the source and all sinks of M are silent tasks,
whereas all other tasks are observable, (v) every node of M is on a path from
the source to some sink, and (vi) there exist no data flow edges which involve
silent tasks, i.e., ∄(a, (d, r)) ∈ F ∶ µ(a) = τ and ∄((d, r), a) ∈ F ∶ µ(a) = τ .

We adapt the notation similar to BPMN [3] for visualization of process models.
An observable task is drawn as a rectangle that has rounded corners with its
name inside. Source and sink tasks are visualized as start and end BPMN events,



Weak Conformance of Process Models with respect to Data Objects 3
Order Process (vertical space minimized) 2

Analyze
order

Check
stock

Purchase
raw

material

Make
product ion

plan

Manu-
facture

products

Ship
products Send bill Receive

payment

Order
[confirmed]

Product
[created]

Product
[in stock]

Product
[shipped]

Order
[accepted]

Order
[billed]

Order
[payed]

Order
[received] Product

[not in
stock]

Andreas Meyer 1 of 1 27.01.2012

Fig. 1. A simple “order delivery and payment” process model

respectively. Gateways are drawn as diamonds. We call a gateway g ∈ GM of M
an xor (an and) gateway, if typeM(g) = xor (typeM(g) = and). An xor (an and)
gateway uses a marker which is shaped like “×” (“+”) inside the diamond shape.
A data object (in a particular data state) is visualized as a BPMN data object. A
data object d ∈DM can appear multiple times in the visualization of the process
model (also when in a particular data state r ∈ RM ). Control flow and data flow
edges are drawn as solid and dashed directed edges, respectively.

The semantics of a process model is defined as a token game. A marking of a
process model is represented by tokens on its control flow edges. Given process
model M , a marking (or a process state) of M is a mapping m ∶ CM → N0 (N0 is
the set of natural numbers including zero). Fig. 1 shows a process model in its
initial process state – a process state which puts one token on the only outgoing
control flow edge of the source and no tokens elsewhere. Every node of a process
model (except silent tasks) can be executed. The execution of an observable
task removes one token from its only incoming and adds one token on its only
outgoing control flow edge. The execution of an and gateway removes one token
from each of its incoming control flow edges and then adds one token on each of
its outgoing control flow edges. The execution of an xor gateway removes one
token from one of its incoming control flow edges and afterwards adds one token
on one of its outgoing control flow edges; the choice of the incoming edge as well
as of the outgoing edge is done nondeterministically. Observe that we abstract
from data-based decisions that are usually used to control the semantics of xor
gateways. Let m and m′ be two markings of M . We write m xÐ→m′ to denote
that m changes to m′ by executing node x of M . If σ = a1a2 . . . an, n ∈ N0, is a
sequence of nodes of M , m σÐ→m′ denotes the fact that there exists a sequence of
process states m1m2 . . .mn−1 such that m a1Ð→ m1

a2Ð→ . . .mn−1
anÐ→ m′. We call

σ an execution sequence of M which starts with m. Let a and a′ be two nodes of
M . With a⇒M a′ we denote the predicate which evaluates to true if a = a′ orOrder OLC

received

accepted

rejected

confirmed

archived

shipped billed payed

Andreas Meyer 1 of 1 27.01.2012

(a)

Product OLC

in stock

not in
stock

shipped

created

Andreas Meyer 1 of 1 27.01.2012

(b)

Fig. 2. Object life cycles of (a) “Order” and (b) “Product” data objects



4 Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

there exists an execution sequence of M which starts with the initial marking
and executes a before a′; otherwise a⇒M a′ evaluates to false.

Next, we proceed with the definition of an object life cycle.
Definition 2 (Object life cycle).
An object life cycle is a tuple L = (S,Σ,↦, i), where S is a finite set of data states,
Σ is a finite set of actions (S and Σ are disjoint), ↦ ⊆ S ×Σ ×S is the data state
transition relation, and i ∈ S is the initial data state.
We use subscripts SL, ΣL, ↦L, and iL, to denote the relation of the elements
to the object life cycle L. Note that we omit subscripts where the context is
clear. For s, s′ ∈ S and a ∈ Σ we denote by s az→ s′ the fact that (s, a, s′) ∈ ↦. If
σ = a1a2 . . . an, n ∈ N0, is a sequence of actions, s σz→ s′ denotes the fact that there
exists a sequence of data states s1s2 . . . sn−1 such that s a1z→ s1

a2z→ . . . sn−1
anz→ s′.

We call σ an execution sequence of L which starts with s, and s′ is a reachable
data state from data state s via σ. With s⇒L s

′ we denote the predicate which
evaluates to true if s = s′ or there exists an execution sequence of L which starts
with iL and reaches s before s′; otherwise s⇒L s

′ evaluates to false.
Finally, a process scenario is defined as follows.

Definition 3 (Process scenario).
A process scenario is a tuple H = (M,L, ω), where M is a process model, L is a
finite set of object life cycles, and ω ∶DM → L assigns to each data object of M
an object life cycle.
Note that we assume that for a process scenario H = (M,L, ω) it holds that ω is
injective and ⋃L∈ω(DM ) SL ⊆ RM . Fig. 1 and Fig. 2 visualize a process scenario.
The process model of the scenario is given in Fig. 1. It contains two data objects:
“Order” and “Product”. The life cycles of these data objects are shown in Fig. 2(a)
and Fig. 2(b), respectively.

3 Weak Conformance
Prior to proceeding with the definition of weak conformance, we define several
notions for convenience considerations. Let f ∈ FM be a data flow edge of process
model M . With fA, fD, and fR we denote the task, data object, and data
state component of f , respectively. For instance, if f is equal to (a, (d, r)) or to
((d, r), a), then (in both cases) fA = a, fD = d, and fR = r. We call f an input data
flow edge if f ∈ ((D ×R) ×A), and an output data flow edge if f ∈ (A× (D ×R)).
Definition 4 (Weak data object conformance).
Given process scenario H = (M,L, ω), M = (A,G,D,R,C,F, type,A, µ), M
satisfies weak conformance with respect to data object d ∈ D if for all f, f ′ ∈ F
such that fD = d = f ′D holds fA ⇒M f ′A implies fR ⇒ω(d) f ′R, and fA = f ′A implies
f is an input edge and f ′ is an output edge.
Given a process scenario, we say that the process model satisfies weak conformance,
if it satisfies weak conformance with respect to each of its data objects. Weak
data object conformance is satisfied if for each two succeeding data states of a
data object there exists an execution sequence from the first to the second data
state in the corresponding object life cycle. Two data states are succeeding in



Weak Conformance of Process Models with respect to Data Objects 5

the process model if either (i) they are accessed by the same task with one being
part of an input and one being part of an output data flow edge, or (ii) there
exists an execution sequence in the process model in which two different tasks
access the same data object in two data states.

The process model in Fig. 1 satisfies weak conformance with respect to data
object “Product” and does not satisfy weak conformance with respect to data
object “Order”. Indeed, there exists an execution sequence which visits task
“Analyze order” before task “Send bill”, which access data object “Order” in data
states “confirmed” and “accepted”, respectively. However, data state “accepted”
is not reachable in the object life cycle in Fig. 2(a) via data state “confirmed”.
One can fix this flaw, for instance, by changing the data state of the only input
data flow of “Send bill” task from “accepted” to “confirmed”, which also modifies
the process model to satisfy weak conformance.

4 Related Work
Process models which follow on the imperative design paradigm have been studied
extensively [1]. The increasing interest in the development of process models for
execution has shifted the focus from control flow to data flow perspective. The
first step in this regard are artifact-centric processes introduced in [4]. Artifact-
centric processes connect data objects with the control flow of process models by
specifying object life cycles which represent data dependencies and based thereon,
the order of activity execution. In [5,6], the authors present an approach which
connects object life cycles with process models by determining commonalities
between both representations and transforming one into the other. In [7], a
rule-based approach is described; it allows to connect control flow with data flow
and, thus, to automatically create data-driven executable process models. In
terms of data-driven execution, case handling [8] plays a major role, as in case
handling data dependencies solely determine the order of task execution. In this
paper, we also concentrate on the integrated scenarios which incorporate process
models and object life cycles. However, we remove the assumption that all the
approaches mentioned above follow, i.e., both representations must completely
correspond to each other. Instead, we set object life cycles of data objects as
references that describe what can be utilized by process models.

Compliance, or correctness, in process models mostly refers to checks of
the process model with respect to a defined rule set containing, for instance,
business policies. The field of compliance is well researched [9,10,11,12] and has
already been tackled for artifact centric processes, e.g., [13]. A different type of
compliance is introduced in [6]. There, compliance between a process model and
an object life cycle of one data object used in the process model is defined as the
combination of object life cycle conformance (all data state transitions induced
in the process model must occur in the object life cycle) and coverage (opposite
containment relation). In this paper, we proposed the definition of a similar type
of compliance. As we set object life cycles to be the reference, we assume them
to be correct and, therefore, we can restrict the compliance check to conformance
only. For conformance, instead of working with direct data state transitions we
rely on data state reachability.



6 Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

5 Conclusion
In this paper, we proposed a notion to check for weak conformance between a
process model and object life cycles of its utilized data objects. Weak conformance
is satisfied for a process model if for each of its execution sequences holds that
once two data states of a data object are accessed in a specific order, these data
states can be reached in the object life cycle of the data object in the same order.

In future works, we plan to propose an algorithm to perform analysis checks
based on the notion of weak conformance introduced in this paper. For process
models which do not satisfy weak conformance, one can suggest, whenever
applicable, changes to the process model so that the resulting model conforms to
its data objects. Process model modifications may also be applicable to already
conforming process models in order to simplify their structure while preserving
the conformance property. Furthermore, in process scenarios with “large” object
life cycles, a conforming process model can determine the relevant aspects so that
the object life cycles get tailored towards the specific needs of process scenarios
and, in this way, become better understandable.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer (2007)

2. Booch, G.: Object-Oriented Analysis and Design with Applications (3rd Edition).
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (2004)

3. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)
http://www.omg.org/spec/BPMN/2.0/ accessed November 12, 2020.

4. Nigam, A., Caswell, N.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3) (2003) 428–445

5. Ryndina, K., Küster, J., Gall: Consistency of Business Process Models and Object
Life Cycles. In: MoDELS Workshops, Springer (2006) 80–90

6. Küster, J., Ryndina, K., Gall: Generation of Business Process Models for Object
Life Cycle Compliance. In: Business Process Management, Springer (2007) 165–181

7. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and
Dynamic Adaptation of Data-driven Process Structures. In: Advanced Information
Systems Engineering, Springer (2008) 48–63

8. van der Aalst, W., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for
Business Process Support. Data and Knowledge Engineering 53(2) (2005) 129–162

9. Awad, A.: A Compliance Management Framework for Business Process Models.
PhD thesis, Hasso Plattner Institute (2011)

10. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with
Obligations and Permissions. In: BPM Workshops, Springer (2006) 5–14

11. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: EDOC, IEEE (2006) 221–232

12. Agrawal, R., Johnson, C., Kiernan, J., Leymann, F.: Taming Compliance with
Sarbanes-Oxley Internal Controls Using Database Technology. In: International
Conference on Data Engineering, IEEE (2006) 92–101

13. Lohmann, N.: Compliance by design for artifact-centric business processes. In:
Business Process Management, Springer (2011) 99–115

http://www.omg.org/spec/BPMN/2.0/

	Weak Conformance of Process Models with respect to Data Objects
	Introduction
	Process Scenarios
	Weak Conformance
	Related Work
	Conclusion

